Search results for " cocharacters"

showing 2 items of 2 documents

Group graded algebras and multiplicities bounded by a constant

2013

AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.

Discrete mathematicsPure mathematicsFinite groupAlgebra and Number TheoryMathematics::Commutative AlgebraGroup (mathematics)Zero (complex analysis)Polynomial identities Graded algebras cocharactersRepresentation theorySettore MAT/02 - AlgebraSymmetric groupBounded functionAlgebra over a fieldConstant (mathematics)MathematicsJournal of Pure and Applied Algebra
researchProduct

Gradings on the algebra of upper triangular matrices of size three

2013

Abstract Let UT 3 ( F ) be the algebra of 3 × 3 upper triangular matrices over a field F . On UT 3 ( F ) , up to isomorphism, there are at most five non-trivial elementary gradings and we study the graded polynomial identities for such gradings. In case F is of characteristic zero we give a complete description of the space of multilinear graded identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . We finally compute the multiplicities in the graded cocharacter sequence for every elementary G -grading on UT 3 ( F ) .

Numerical AnalysisMultilinear mapPolynomialAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and AlgebrasZero (complex analysis)Triangular matrixField (mathematics)Representation theorypolynomial identity G-graded algebras cocharacters graded ideals of identitiesCombinatoricsAlgebraSettore MAT/02 - AlgebraDifferential graded algebraDiscrete Mathematics and CombinatoricsGeometry and TopologyIsomorphismComputer Science::Information TheoryMathematics
researchProduct